

INNOVATIVE PRICE ANALYSIS AND WILLINGNESS-TO-PAY

DAVIDE MENOZZI, UNI. PARMA

25th October – Aligning the PrimeFish Contributions to the Blue Growth Strategy

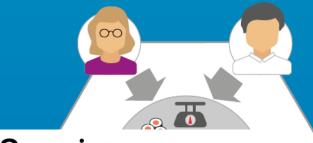
Suggested table of content

- Objective
- Material and method
- Main results (sustainability and nutritional&health claim)
 - Frequencies and choices
 - WTP estimates for sustainability label and for nutritional & health claim, and relative heterogeneity (clusters)
 - Role of personal beliefs, attitude and trust
 - Price eslasticities and Positioning map
- Policy-relevant conclusions

Objective

- **Analyse consumers' choices** and willingness to pay for innovative features:
 - evaluate fish attributes

PRICE


compare product/species alternatives (consumer FSD& veggies preferences differ across

species)
PRODUCTION METHOD

NUTRITION & SUSTAINABILITY evaluate how preferences differ

among 5 countries

Species

Cod

Salmon

Material and method

- Survey performed on 500 respondents per country
- The online survey included several items (attitude, frequencies, motives, etc.) and a (hypothetical) discrete choice experiment
- Attributes and levels defined by previous qualitative phase and literature
- Discrete choice model to to estimate beta coefficients for each product attribute (including fish species)
 - consumer's willingness to pay (WTP) for each attribute (incl. fish), and product profile
 - positioning map and elasticities

Ready-to-cook Salmon in France

Trout in Italy, France, UK,

Spain and

Germany

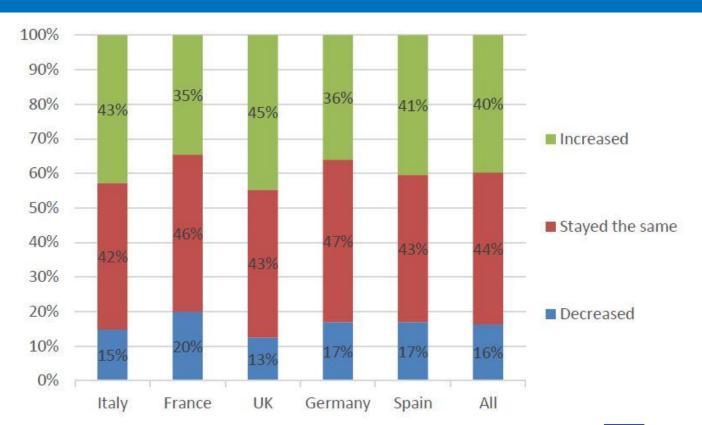
Ready-to-cook Salmon in Germany

Stratified random sampling from 5 EU countries

Country	Total N	Female (%)	Age (Avg.)	Educ. Low (%)	Educ. High (%)
Italy	504	50.4	43.2	39.1	16.5
France	501	48.9	44.0	18.4	34.3
Germany	502	47.8	44.1	1 <i>7</i> .1	25.5
Spain	501	48.1	42.3	36.1	35.9
UK	501	49.3	42.1	15.8	40.3

Representative of the national populations in at least three of the following criteria: age, gender, educational level and geographical macro-areas

Frequency of fish consumption (median)


Country	Fish	Trout	Herring	Salmon	Seabass	Seabream	Cod	Pangasius
Italy	3-4 times a week	Few times a year	Few times a year	Once a month	Once a month	Once a month	2-3 times a month	Few times a year
France	3-4 times a week	Few times a year	Few times a year	Once a month	Few times a year	Few times a year	Once a month	Never
Germany	2-3 times a month	Few times a year	Few times a year	Once a month	Never	Never	2-3 times a month	Few times a year
Spain	3-4 times a week	Few times a year	Few times a year	Once a month	Once a month	Once a month	2-3 times a month	Few times a year
UK	2-3 times a month	Few times a year	Never	Once a month	Few times a year	Never	2-3 times a month	Never

Evolution of fish consumption in the past 3 years

Overall, 40% of the respondents increased fish consumption in the past 3 years, 16% decreased fish consumption in the same period, and 44% maintained the same level.

Fish choice motives

							2 A					
*	Franc	e	Germa	any	Italy	,	Spai	n	UK	3	Tota	d
Fish choice motives	Mean	sd	Mean	sd	Mean	sd	Mean	sd	Mean	sd	Mean	sd
Value for money	5.63	1.24	5.15	1.39	5.61	1.17	5.62	1.27	5.33	1.42	5.47	1.31
Price	5.57	1.24	5.10	1.34	5.31	1.25	5.44	1.29	5.29	1.42	5.34	1.32
General appearance	5.43	1.49	5.19	1.48	5.66	1.38	5.38	1.47	5.01	1.65	5.33	1.51
Free of smell	4.81	1.64	4.77	1.64	5.17	1.48	5.34	1.49	4.90	1.76	5.00	1.62
Easy to cook	5.09	1.44	4.87	1.49	4.99	1.35	4.97	1.44	5.00	1.49	4.98	1.44
Days since catch/harvest	5.01	1.51	4.39	1.63	5.36	1.43	5.25	1.46	4.70	1.67	4.94	1.58
Sustainability certification	4.80	1.48	4.81	1.59	5.14	1.36	5.09	1.45	4.65	1.72	4.90	1.54
Domestic origin	5.01	1.47	4.13	1.57	5.26	1.42	4.97	1.49	4.35	1.68	4.74	1.59
Wild caught	4.77	1.44	4.01	1.47	5.39	1.34	4.74	1.49	4.33	1.64	4.65	1.55
Organic certification	4.60	1.45	4.04	1.69	4.94	1.45	5.00	1.47	3.92	1.77	4.50	1.64
Not previously frozen	4.54	1.61	3.88	1.55	5.11	1.54	4.81	1.58	4.16	1.70	4.50	1.66

4.45

1.61

4.62

1.50

1.65

1.61

3.89

4.28

Low in calories

4.28

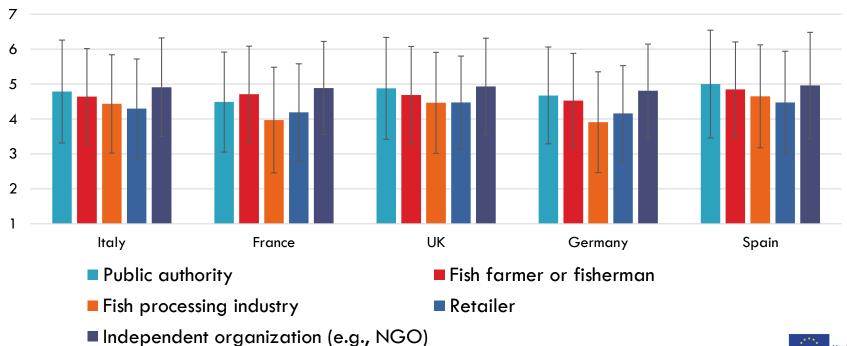
1.65

4.16

1.77

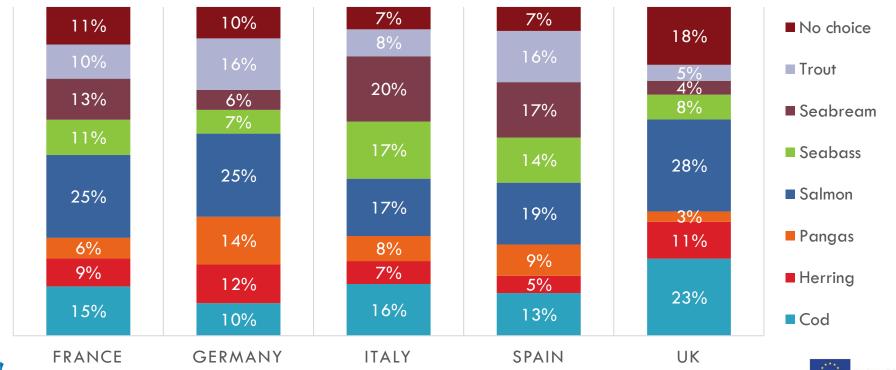
Results – attitudinal variables

Environmental concerns


- I believe that fishing has negative consequences on marine resources
- I believe that fish farming has negative consequences on the environment

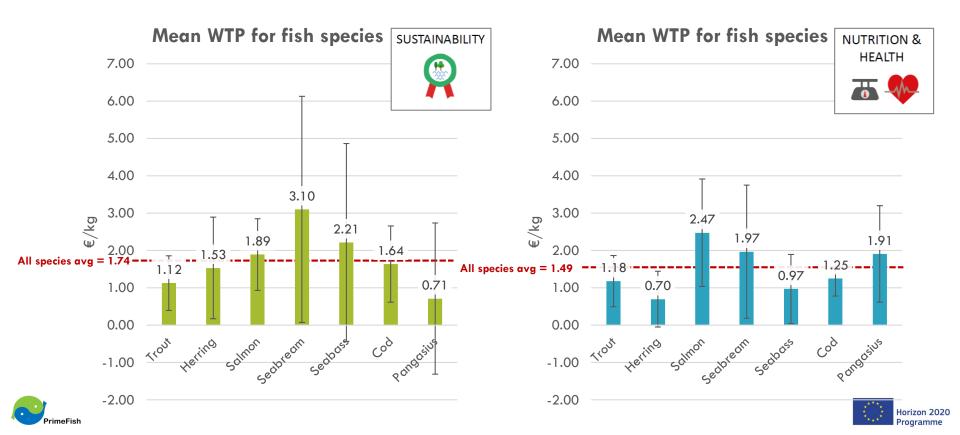
Trust in the information source

I would **trust** the information provided about the **sustainable** fish production practices if they were certified by a:



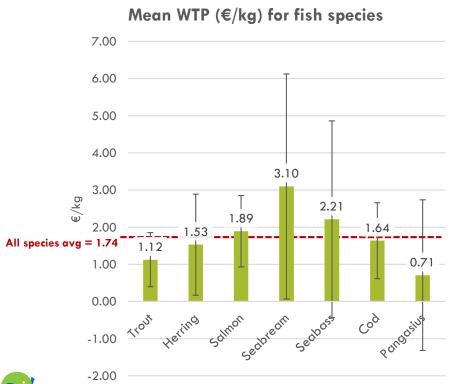
Choice probability

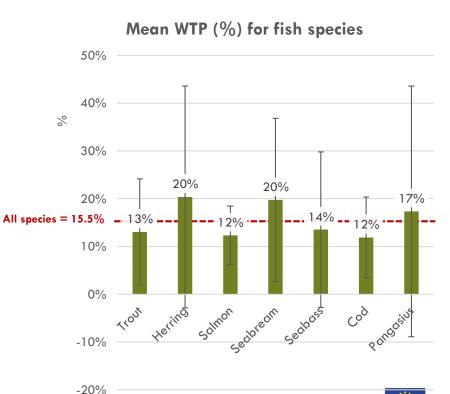
Choice probability based on the choice experiment



Horizon 202 Programme

Parameter estimations (extract)


	Fr	ance		Italy		Germany		UK			Spain				
Sustainability	Mean	SD		Mean	SD		Mean	SD		Mean	SD		Mean	SD	
Cod	0.017	0.094	**	0.336	0.092	***	0.153	0.111	***	0.124	0.080	***	0.153	0.097	***
Herring	-0.068	0.119	***	0.144	0.126	***	0.223	0.105	***	0.249	0.108	***	0.174	0.148	***
Pangasius	0.220	0.136	***	0.221	0.121	***	0.173	0.094	***	-0.204	0.186	***	0.156	0.108	***
Salmon	0.171	0.077	***	0.066	0.088	***	0.105	0.077	***	0.073	0.076	***	0.064	0.086	***
Seabass	0.389	0.105	***	0.095	0.085	***	0.473	0.130	***	0.032	0.120	***	-0.069	0.093	***
Seabream	0.059	0.099	***	0.222	0.081	***	0.447	0.138	***	0.165	0.162	***	0.162	0.086	***
Trout	0.162	0.108	***	0.200	0.119	***	0.106	0.092	***	-0.018	0.152	***	0.176	0.091	***
Health & Nutrition	Mean	SD		Mean	SD		Mean	SD		Mean	SD		Mean	SD	
Cod	0.095	0.093	***	0.173	0.088	***	0.180	0.109	***	0.054	0.079	***	0.096	0.096	***
Herring	0.014	0.116	***	0.081	0.125	***	0.242	0.102	***	0.003	0.108	ns	0.023	0.142	**
Pangasius	-0.009	0.132	ns	0.180	0.120	***	0.1 <i>57</i>	0.091	***	0.176	0.181	***	0.349	0.109	***
Salmon	-0.010	0.074	**	0.148	0.084	***	0.165	0.073	***	0.178	0.071	***	0.181	0.080	***
Seabass	0.258	0.107	***	0.153	0.087	***	-0.052	0.123	***	0.034	0.122	***	0.189	0.095	***
Seabream	0.036	0.098	***	0.363	0.082	***	0.255	0.136	***	0.027	0.166	**	0.174	0.086	***
Trout	0.027	0.110	***	0.105	0.120	***	0.105	0.091	***	0.139	0.155	***	0.198	0.091	***
Log-likelihood	-75	09.23		-7	666.7		-75	29.17		-6818.34			-78	320.09	
Accepted Rate	0	.602		C	.626		0	.575		C	.437		0	.621	
Hit probability	0	.167		0	.165		0	.164		0.201			0.154		
Avg. efficiency	0	.647		0	.710		0	.598		C).372		0	.696	?(Jramme

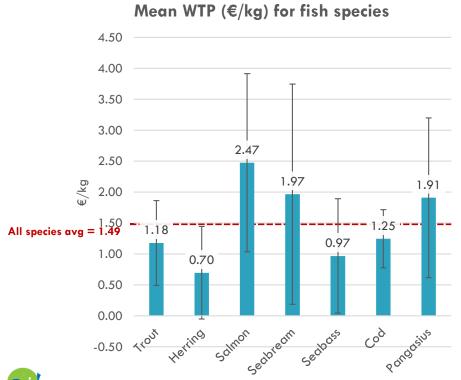

Mean WTP for fish species

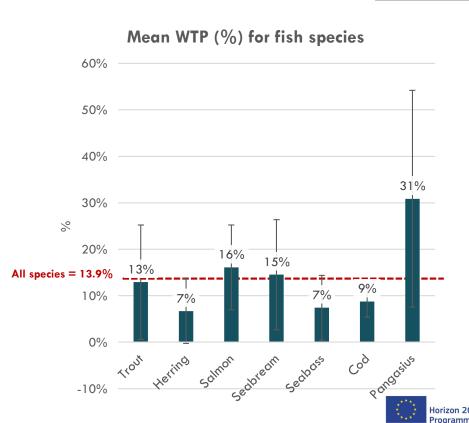
WTP for sustainability label – mean values

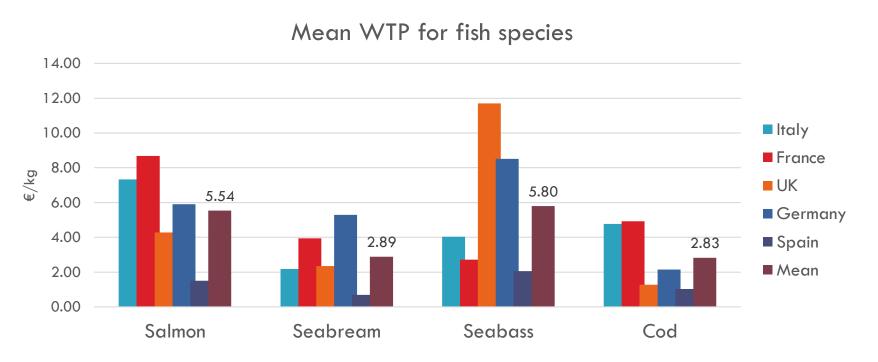
WTP for sustainability label

SUSTAINABILITY

%	of	a'	verag	е
mc	ırk	et	price	


Cod	1.3%		27.2%		9.6%	11.5%		9.9%	
Herring	-8.3%	ŀ	20.4%		16.7%	62.4%		10.7%	
Pangasius	17.3%		21.1%		48.6%	-30.4%		30.2%	
Salmon	22.8%		9.4%		15.5%	6.7%		7.1%	
Seabass	19.6%		7.2%		42.0%	3.6%		-4.8%	ŀ
Seabream	3.9%		16.5%		52.7%	15.7%		10.0%	
Trout	10.3%		14.1%	I	9.3%	-1.2%	-	32.8%	


WTP for health & nutritional claim – mean values


WTP for health & nutritional claim

% of average market price 11.3% 18.1% -0.7% 17.2% 26.3% **Pangasius** 21.2% 24.4% 16.2% 20.2% 11.6% -4.7% 13.2% 30.1% 9.2% rimeFish Programme

NUTRITION & HEALTH

WTP for sustainability label – mean values

Belief strength

"Consumers' WTP" for functional foods significantly varies with [...] different subjective beliefs about functional and non-functional foods" (Pappalardo & Lusk 2016, FQP)

- On a scale of 0-100, to what extent do you believe in the benefits of such certification to the environment and society? (e.g., 0 = completely unbelievable; 50 = neutral; 100 = completely believable)
- On a scale of 0-100, to what extent do you believe such health benefit claims? (e.g., 0 = completely unbelievable; 50 = neutral; 100 = completely believable)

WTP estimates into the PrimeDSS

Italy – WTP for Seabream attributes

Italy – Seabream WTP	€/kg	% average price
Average price	10.82	-
Production Method (Wild caught vs. Farmed)	2.19	20.2%
Format (Wholefish vs. Ready-to-cook)	1.44	13.3%
Format (Fillet vs. Ready-to-cook)	1.54	14.2%
Sustainability label	1.78	16.5%
Health & nutritional claim	2.91	26.9%

- The WTP for **sustainability label** of seabream are coherent with other Italian studies: e.g., Stefani et al. (2011), WTP organic seabream = 2.76 €/kg
- It shows that "consumers with the highest WTP for organic fish were characterized by high interest in health-related issues and pronounced concerns for environmental issues"

the amount of money respondents are willing to pay for a change in the attribute from one level (the base level) to another one

WTP estimates into the PrimeDSS

Italy – WTP for Seabream attributes

Italy – Seabream WTP	€/kg	% average price
Average price	10.82	-
Production Method (Wild caught vs. Farmed)	2.19	20.2%
Format (Wholefish vs. Ready-to-cook)	1.44	13.3%
Format (Fillet vs. Ready-to-cook)	1.54	14.2%
Sustainability label	1.78	16.5%
Health & nutritional claim	2.91	26.9%

the amount of money respondents are willing to pay for a change in the attribute from one level (the base level) to another one

The WTP tool in the DSS

Seabream
Fillet
Wild caught
Sustainability

WTP 16,33 €/kg

Seabream
Ready-to-cook
Farmed
Health claim

WTP 13,73 €/kg

WTP estimates by cluster

Germany – WTP for Cod attributes in segment with high WTP (28%)

Germany – Cod WTP	€/kg	% average price
Average price	16.75	-
Production Method (Wild caught vs. Farmed)	6.72	40.1%
Format (Wholefish vs. Ready-to-cook)	-5.25	-31.4%
Format (Fillet vs. Ready-to-cook)	1.65	9.9%
Sustainability label	4.66	27.8%
Health & nutritional claim	2.52	15.0%

Segment description

51% females

40% <40 ys

medium-to-high educational level

48% high incomes

76% small family units (one/two members)

Cod
Ready-to-cook
Wild caught
Sustainability

WTP 28.13 €/kg

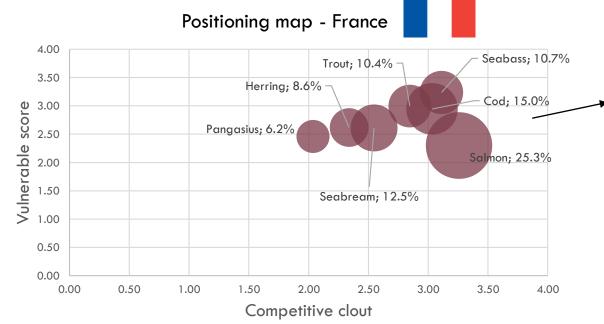
Price elasticities

Own- and Cross-price elasticities: estimate a change in "market share" (choice probability) for seafood *i* associated with a change in the price of seafood *i* or *j*

Market	Cod	Herring	Pangas	Salmon	Seabass	Seabream	Trout
Cod	-1,17	0,08	0,04	0,38	0,10	0,06	
Herring	0,41	-0,81	0,06	0,49	0,10	0,06	
Pangasius	0,10	0,06	-1,33	0,47	0,10	0,06	
Salmon	0,32	0,07	0,04	-1,11	0,10	0,06	if t
Seabass	0,27	0,05	0,03	0,33	-1,48	0,05	sha
Seabream	0,29	0,06	0,03	0,35	0,10	-1,52	ded
Trout	0,34	0,08	0,04	0,40	0,10	0,06	sha

if the cod price rises 1%, the share of cod would be decreased by 1.17%, and the share of the other seafood would be increased by a range of 0.04% (pangasius) to 0.38% (salmon)

0,07 0,09 0,08



Positioning map

Positioning map measures the **competition between seafood alternatives** in the market (based on price elasticities)

the degree to
which a fish
product is
vulnerable to its
competitors

the size of the bubble is proportional to the overall choices (proxy of market share)

Final remarks

- 'Sustainable label' and 'Nutritional & health claim' preferences varied among species and countries (likely affected by personal beliefs, attitude and trust)
- The PrimeDSS tool can assist the producers (fishermen, processing industries, etc.) to evaluate the consumers' WTP and identify the segment characteristics (target)

For policy makers:

- awareness and use of fish quality schemes
- how to improve consumers' knowledge as well as beliefs/trust?

"Knowledge about specific health and nutritional benefits of fish consumption does not appear to be very strong" (Carlucci et al. 2015)

Thank you!

